Level - 1

- **16.(A)** Here H_2O_2 reduces PbO_2 to PbO. Thus it acts as a reducing agent.
- **17.(B)** High purity dihydrogen is obtained by electrolysis of warm aqueous Barium hydroxide.
- **18.(B)** Coal gasification is : $C + H_2O \xrightarrow{673 \text{ K}} CO + H_2$
- **19.(D)** Refer NCERT
- **20.(C)** $MgCl_2 \cdot 6H_2O \xrightarrow{SOCl_2} MgCl_2 + SO_2 + HCl$
- **21.(D)** Li has high hydration energy so, E_{ox}° of Li is high and for rest of elements I.E is the deciding factor.
- **22.(A)** Alkali metals are good conductors of heat and electricity. They are good reducing agents and have low ionisation energy.
- **23.(ABD)** $CaOCl_2$, Na_2O_2 , KO_2 are bleaching agent. They bleach by oxidation.
- **24.(C)** $CaH_2 + H_2O \longrightarrow Ca(OH)_2 + H_2$
- **25.(D)** Reactivity of Alkali metals is a function of E°-value and E°-value is dependent on I.E for alkali metals.
- **26.(A)** Formation of $Li^+(M^+)$ ion is the property of first group elements, i.e. alkali metals, not that of second group elements
- **27.(B)** Alkali metals are highly reactive and form strongly alkaline hydroxide.
- **28.(C)** Discharge potential of $Cl_{(conc.)}^- < H_2O < Cl_{(dil.)}^-$ so conc. Cl_2^- get discharged and Cl_2 get evolved instead of O_2 .
- **29.(A)** General electronic configuration of group-1 elements is ns^{1} .
- **30.(B)** $K + O_2 \longrightarrow KO_2$